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Goal of Uncertainty Analysis

Determination of the uncertainties [and 
sensitivities]  in predictions of key 
performance attributes associated with the 
fuel cycle due to input data and modeling
uncertainties.
Includes for example such key performance attributes of
nuclear power plants (thermal margins, reactivity 
coefficients, SDM)
repository performance (heat loads, radio-toxicity)
fuel cycle proliferation resistance (SNM inventories)



Usages of Uncertainty Analysis

Define system design margins required.
Alter system designs to make less sensitive 
to input data uncertainties.
Determine where costs of additional 
experiments and/or modeling improvements 
are justified by savings in using reduced 
design margins.



Possible Uncertainty & Sensitivity 
Analyses Approaches

Standard Forward Approach
Randomly perturb input data based upon their 
known or assumed probability distributions.
Attributes
Simple to implement for uncorrelated input data
Well suited for problems with many key attributes and 
limited input data
Provides probability distributions of key attributes
Difficult to obtain sensitivity coefficients from
Correlated input data present several challenges



Possible Uncertainty & Sensitivity 
Analyses Approaches

Standard Inverse Approach
o [Generalize Perturbation Theory]

Attributes
More difficult to implement with significant development 
effort, particularly for linked modules sequence
Well suited for problems with many input data and few 
key attributes
Does not provide probability distributions of key 
attributes
Directly obtain sensitivity coefficients
Correlated input data treated without difficulty



Possible Uncertainty & Sensitivity 
Analyses Approaches

Modified  Forward Approach
1. Determine Singular Value Decomposition (SVD) of 

covariance matrix associated with input data using Efficient 
Subspace Method [ESM*], which involves covariance matrix 
operating on random vectors to determine the subspace 
rank “r” bases vectors.

2. Utilizing the “r” bases vectors for the subspace as identified 
by SVD as input data to system model, execute the system 
model a total of “r” times.

3. Complete a SVD of system model response matrix to 
determine covariance matrix of  key attributes of system.
Note that Step 1 when applied to the system model 
generates the SVD and hence subspace associated with 
the Jacobian matrix.

*Patent pending on ESM.



Possible Uncertainty & Sensitivity 
Analyses Approaches

Modified  Forward Approach [cont.]
Attributes
Simple to implement for uncorrelated and correlated 
input data
Well suited for problems with many key attributes and 
many input data
Does not provide probability distributions of key 
attributes [may be able to do this if random vectors 
generated using data uncertainty information]
Directly obtain sensitivity coefficients
Correlated input data treated without difficulty



Sample Application of Efficient Subspace 
Method

Commercial BWR core application [completed 
previously as portion of adaptive core simulator research 
by former student Dr. Hany Abdel-Khalik]
Wish to determine uncertainties of node-wise core power 
distribution and core reactivity as a function of cycle 
exposure, i.e. burnup. Needless to say, uncertainties in 
EOC discharged isotopic number densities were also 
determined. 
106 input data and 105 key attributes.
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Illustrative example:

- Propagate ENDF/B uncertainty information through lattice 

physics codes to important core attributes.

Other examples:

- Burnt fuel isotopic concentration uncertainties.

- Repository performance metrics.

- Thermal-hydraulic attributes.

Uncertainty Propagation
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AMPX-TRITON (ORNL) +

   FORMOSA-B (NCSU)

AMPX: 44Group5Cov

- 29 different nuclides, e.g. Al-27,

Am-241,B-10,C-12,U-235,U-238,

Pu-239,Pu-240,Pu-241

- Missing important isotopics, e.g.

Samarium, and Gadolinium.

(Assumed to have zero uncertainty).
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AMPX-TRITON (ORNL) +

   FORMOSA-B (NCSU)

GE-12, 10x10 lattice.
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AMPX-TRITON (ORNL) +

   FORMOSA-B (NCSU)

BWR/3 reload core

- Cycle Exposure ~ 20 GWD/MTU

- Number of FAs = 560.
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AMPX-TRITON (ORNL) +

   FORMOSA-B (NCSU)

Core Attributes:

- Core critical eigenvalue.

- Core power distribution.
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Development Cycle Implications

1. All model development should consider how modeling 
uncertainties are going to be assessed.

2. Treating modeling and input data uncertainties needs to 
be considered early in development cycle.

3. Computational resources required to treat uncertainties 
can easily be one or two orders of magnitude higher 
than what the simulation model requires.

4. Experimental and/or benchmark evaluations of 
uncertainties in simulation models is a mandatory step 
in the development cycle. 




